Exercise 16

Solve the initial-value problem.

$$
y^{\prime \prime}+4 y^{\prime}+29 y=0, \quad y(0)=1, \quad y(\pi)=-e^{-2 \pi}
$$

Solution

This is a linear homogeneous ODE with constant coefficients, so it has solutions of the form $y=e^{r x}$.

$$
y=e^{r x} \quad \rightarrow \quad y^{\prime}=r e^{r x} \quad \rightarrow \quad y^{\prime \prime}=r^{2} e^{r x}
$$

Substitute these formulas into the ODE.

$$
r^{2} e^{r x}+4\left(r e^{r x}\right)+29\left(e^{r x}\right)=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}+4 r+29=0
$$

Solve for r.

$$
\begin{gathered}
r=\frac{-4 \pm \sqrt{16-4(1)(29)}}{2}=\frac{-4 \pm \sqrt{-100}}{2}=-2 \pm 5 i \\
r=\{-2-5 i,-2+5 i\}
\end{gathered}
$$

Two solutions to the ODE are $e^{(-2-5 i) x}$ and $e^{(-2+5 i) x}$. According to the principle of superposition, the general solution is a linear combination of these two.

$$
\begin{aligned}
y(x) & =C_{1} e^{(-2-5 i) x}+C_{2} e^{(-2+5 i) x} \\
& =C_{1} e^{-2 x} e^{-5 i x}+C_{2} e^{-2 x} e^{5 i x} \\
& =e^{-2 x}\left(C_{1} e^{-5 i x}+C_{2} e^{5 i x}\right) \\
& =e^{-2 x}\left[C_{1}(\cos 5 x-i \sin 5 x)+C_{2}(\cos 5 x+i \sin 5 x)\right] \\
& =e^{-2 x}\left[\left(C_{1}+C_{2}\right) \cos 5 x+\left(-i C_{1}+i C_{2}\right) \sin 5 x\right] \\
& =e^{-2 x}\left(C_{3} \cos 5 x+C_{4} \sin 5 x\right)
\end{aligned}
$$

Apply the boundary conditions to determine C_{3} and C_{4}.

$$
\begin{aligned}
& y(0)=C_{3}=1 \\
& y(\pi)=e^{-2 \pi}\left(-C_{3}\right)=-e^{-2 \pi}
\end{aligned}
$$

Solving this system yields $C_{3}=1$ and $C_{3}=1$. Therefore,

$$
y(x)=e^{-2 x}\left(\cos 5 x+C_{4} \sin 5 x\right),
$$

where C_{4} remains arbitrary.

